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Functional Connectivity Matrix

Functional Connectivity

Functional connectivity is defined as the temporal coincidence of spatially distant
neurophysiological events.

Functional Connectivity (Gillebert and Mantini,
2013)

Functional Connectivity Matrix

For each participant i , let yij ∈ RT be
the longitudinal measurement of blood
oxygen level-dependent (BOLD) signal
on the region of interest j ,
j = 1, 2, . . . , p.

The functional connectivity matrix for
participant i : Σi = Cov(yi ) ⪰ 0

Clustering Matrices Hanchao Zhang 4 / 24



Introduction Distance Metrics for Clustering Matrices Models for Clustering Matrices Simulation Discussion References

Self-Consistency Clustering Algorithms

Scalar Outcomes

K-Means algorithm (Steinhaus et al., 1956)

minimize
C

1

n

m∑
i=1

∑
k∈Ci

∥∥xk − x̄Ci

∥∥2
︸ ︷︷ ︸
within cluster sum of squares

OR maximize
C

∑
i=m

nCi

n
·
∥∥x̄Ci

∥∥2
︸ ︷︷ ︸

between cluster sum of squares

Functional Outcomes

Clustering Functional data (Tarpey and Kinateder, 2003)
yyy i (t), i = 1, . . . , n, t ∈ T , typically a compact real interval, yi (t) = function

yyy i (t) = bbb′(t) βββi + ϵϵϵi (t) =
∞∑
j=1

βijbj (t) + ϵi (t).

▶ b = (b1(t), . . . , bp(t), . . .)′ is basis functions

▶ βi = (β1i , . . . , βip , . . .)
′ is a vector of basis coefficients

Perform K-Means or other algorithms on basis coefficients βi
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Positive Semi-Definite Matrix Outcomes

Consider that for each observation i , i = 1, 2, . . . , n, we observe p functional outcomes
yij (t) with mean 0, j = 1, 2, . . . , p. Then we can obtain a positive semi-definite matrix for
subject i :

Ψi =

∫
T

yi (t)T yi (t) dt,Ψi ≽ 0,

where Ψi ≽ 0 means Ψi is positive semi-definite matrix. (All the eigenvalues of Ψi are
larger and equal to 0).

Clustering Algorithm Approaches

▶ cluster subjects by Ψi ’s, i = 1, 2, . . . , n

▶ vectorize Ψi ’s and treat it as vector

▶ consider some distance metrics for matrix similarity

▶ consider the probability distribution (e.g., Wishart distribution)
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Distance Metrics for Matrices

Euclidean Distance (chapter 2 Minh and Murino, 2017)

let Ψ1 and Ψ2 ∈ R2×2 be two positive semi-definite matrices. The Euclidean distance
between two matrices dE (Ψ1,Ψ2) can be represented by points in R3

dE (Ψ1,Ψ2) = ∥Ψ1 −Ψ2∥2F = ∥vec(ΨT
1 )− vec(ΨT

2 )∥2

2 positive semi-definite matrices the vectorized matrices
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Distance Metrics for Matrices

the vectorized matrices

Disadvantage of Euclidean Distance

▶ matrices with similar shapes are clustered into different groups
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Distance Metrics for Matrices (chapter 2 Malhi et al., 2017)

Other Metrics

Affine-invariant Riemannian Distance

daiE (A,B) = || log(A− 1
2 BA− 1

2 )||F

Log-Determinant Divergences

d1
log det(A,B) = tr(B−1A− I)− log det(B−1A)

Symmetric Stein Divergence

d2
stein(A,B) = log det(

A+ B

2
)−

1

2
log det(AB)

Disadvantages

▶ does not consider the structure (shape) of p.s.d matrices
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Common Principal Components (CPC) (Flury, 1984)

Definition

Let Ψ1, . . . ,Ψn be positive definite symmetric matrix of dimension p × p, we wish to find
a orthonormal matrix B which makes the Ψi ’s simultaneously “as diagonal as possible”:

Objective Function

Let Fi be the transformed Ψi by B:

Fi = BTΨiB
To make sure that Fi ’s, i = 1, . . . , n are as diagonal as possible, we wish to minimize:

minimize
B

n∏
i=1

{
det

(
diag(Fi )

)
det

(
Fi

) }
=

n∏
i=1

{
det

(
diag(BTΨiB)

)
det

(
BTΨiB

) }
,

where det(Fi ) ≤ det(diag(Fi )).

Algorithms

▶ FG-algorithm (Flury and Constantine, 1985)

▶ MM algorithms (Browne and McNicholas, 2014)

▶ R algorithm (Hallin et al., 2014)
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Unconstrained Common Principal Components for Clustering Matrices

Stiefel Manifold

the Stiefel manifold Vk (Rp) is the set of all orthonormal k-frames in Rp

Vk (Rp) = {A ∈ Rn×p : ATA = Ip}

Self-Consistency Algorithm Based on CPC

Let S ⊂ Rp×p , S ⪰ 0 denote a set of p.s.d. matrices. For each B ∈ Vp(Rp), define:

DB(S) =
{
Ψ ∈ Rp×p ,Ψ ⪰ 0 : ∥Ψ− B diag(FB) BT︸ ︷︷ ︸

Ψ̂

∥F ≤ ∥Ψ− A diag(FA) AT ∥F ,

B ̸= A,A ∈ Vp(Rp)
}
.

Therefore, each matrix in set DB(S) shares common principal components B that can
make them “as diagonal as possible”.

Note

Since we have Ψ = BFBBT = AFAAT , we can redefine DB(S) as follow:

DB(S) =
{
Ψ ∈ Rp×p ,Ψ ⪰ 0 : ∥FB − diag(FB)∥F ≤ ∥FA − diag(FA)∥F ,

B ̸= A,A ∈ Vp(Rp)
}
.
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Unconstrained Common Principal Components for Clustering Matrices

Self-Consistency Algorithm Based on CPC

Let S ∈ Rp×p , S ⪰ 0 denote a measurable set. For each B ∈ Vp(Rp), define:

DB(S) =
{
Ψ ∈ Rp×p ,Ψ ⪰ 0 : ∥Ψ− B diag(FB) BT ∥F ≤ ∥Ψ− A diag(FA) AT ∥F ,

B ̸= A,A ∈ Vp(Rp)
}
.

Unconstrained CPC for Matrices Clustering

Algorithm Clustering Matrices Using Unconstrained CPC

Start with an initial partition of all matrices into K clusters

1: for each cluster k, k = 1, 2, . . . ,K , estimate the common principal component Bk .

2: assign individual matrices Ψi to cluster k if

k∗ = argmin
k=1,...,K

∥Ψi − Bkdiag(FBk
)BT

k ∥F

repeat steps 1 and 2 until convergence.
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Partial Common Principal Components

Self-Consistency Algorithm Based on Partial CPC

Let S ∈ Rp×p , S ⪰ 0 denote a measurable set. For each B :=
(
β1, . . . ,βm

)
∈ Vm(Rp),

DB(S) =
{
Ψ ∈ Rp×p ,Ψ ⪰ 0 : ∥Ψ−

m∑
r=1

fBrβrβ
T
r ∥F ≤ ∥Ψ− fArαrα

T
r ∥F ,

B ̸= A,A ∈ Vm(Rp)
}
,

where f1, . . . , fp are the the diagonal elements of F , and m ≤ p.

Unconstrained CPC for Matrices Clustering

Algorithm Clustering Matrices Using Unconstrained CPC

Start with an initial partition of all matrices into K clusters

1: for each cluster k, k = 1, 2, . . . ,K , estimate the common principal component Bk .

2: assign individual matrices Ψi to cluster k if k∗ = argmin
k=1,...,K

∥Ψi −
∑m

r=1 fBkr
βrβT

r ∥F
repeat steps 1 and 2 until convergence.
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Simulation

Simulation Settings

let B1 and B2 be the two common eigenvectors for the two clusters

B1 =

(
cos(β1) − sin(β1)
sin(β1) cos(β1)

)
B2 =

(
cos(β2) − sin(β2)
sin(β2) cos(β2)

)
,

where β1 and β2 be 2 scalars from 0 to 2π. Let |β1 − β2| = θ be the differences between
two eigenvectors.

let λB1 i = [λB1 i1, λB1 i2] and λB2 i = [λB2 i1, λB2 i2] be the eigenvalues for the two clusters.
Denote ΛB1 i = diag(λB1 i ), and ΛB2 i = diag(λB2 i ), where λ ∼ χ2(df).

Then we can obtain our simulated matrices:

Ψ1i = B1ΛB1 iB
T
1 + E1 Ψ2i = B2ΛB2 iB

T
2 + E2,

where E1, and E1 are random error with mean 0.

Note

▶ θ denotes how close the two clusters of matrices are

▶ E is some random perturbation on eigenvector and eigenvalues.
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Simulations

θ = π/5, df = 5

Simulation

▶ θ = π/5

▶ eigenvalues ∼ χ2(5)

Classification Error

▶ CPCA = 0

▶ rCPCA = 0

▶ Euclidean Distance
= 0.28

▶ Affine Invariance
Divergence = 0.34

▶ Log-Determinant
Divergence = 0.38
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Simulations

θ = π/5, df = 5

Simulation

▶ θ = π/15

▶ eigenvalues ∼ χ2(40)

Classification Error

▶ CPCA = 0

▶ rCPCA = 0.02

▶ Euclidean Distance
= 0.4

▶ Affine Invariance
Divergence = 0.4

▶ Log-Determinant
Divergence = 0.44
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Simulations

θ = π/5, df = 5

Simulation

▶ θ = π/15

▶ eigenvalues ∼ χ2(20)

▶ noise = 5%

Classification Error

▶ CPCA = 0.02

▶ rCPCA = 0.02

▶ Euclidean Distance
= 0.4

▶ Affine Invariance
Divergence = 0.4

▶ Log-Determinant
Divergence = 0.44
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Simulations

θ = π/5, df = 5 θ = π/6, df = 5 θ = π/8, df = 5 θ = π/10, df = 5

θ = π/15, df = 5 θ = π/15, df = 20 θ = π/15, df = 40 θ = π/15, df =
20, noise = 1%

θ = π/15, df =
20, noise = 2%

θ = π/15, df =
20, noise = 4%

θ = π/15, df =
20, noise = 6%

θ = π/15, df =
20, noise = 10%
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Simulations

Simulation Results

Classification Errors
Methods θ = π/5

df = 5
θ = π/6
df = 5

θ = π/8
df = 5

θ = π/10
df = 5

θ = π/15
df = 5

CPCA 0.00 0.00 0.00 0.00 0.00
rCPCA 0.00 0.00 0.02 0.00 0.02
Frobenius 0.28 0.32 0.32 0.34 0.34
Aff. Div. 0.34 0.38 0.42 0.42 0.44
Log-Det 0.38 0.38 0.44 0.44 0.46

Methods θ = π/15
df = 20

θ = π/15
df = 40

θ = π/15
df = 20
noise = 0.01

θ = π/15
df = 20
noise = 0.06

θ = π/15
df = 20
noise = 0.10

CPCA 0.00 0.00 0.02 0.10 0.18
rCPCA 0.10 0.12 0.02 0.14 0.20
Frobenius 0.40 0.40 0.40 0.36 0.50
Aff. Div. 0.40 0.40 0.40 0.40 0.46
Log-Det 0.44 0.44 0.44 0.44 0.48
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